

Titerbestimmung von KOH in Alkohol

Beschreibung

Dieser Applikationsbericht beschreibt das allgemeine Verfahren zur Titerbestimmung von Kalilauge in Alkohol für nicht-wässrige Titrationen. Das Verfahren ist auch auf andere alkalische Titriermittel wie Tetrabutylammoniumhydroxid anwendbar.

Der Titer ist eine dimensionslose Zahl von etwa 1 zum Korrigieren der angegebenen Konzentration. In der Software der Titriergeräte und den Applikationsberichten von SI Analytics® beschreibt der Begriff "Titer" die exakte Konzentration in mol/L und nicht den dimensionslosen Faktor.

Geräte

Titrator	TL 7000, TL 7750, TL 7800
Wechselaufsatz	WA 10, WA 20, WA 50
Elektrode	N 6480 eth oder ähnliche
Kabel	L 1 A
Titrierspitze	Lange Titrierspitze TZ 1643
Laborgeräte	Magnetrührer TM 235
	Becherglas 150 oder 250 ml

Reagenzien

1	KOH - Lösung, von der der Titer bestimmt werden soll		
2	Kaliumhydrogenphthalat (KHPht) Referenzmaterial		
3	Natronkalk		
4	Destilliertes Wasser		
	Alle Reagenzien sollten mindestens analysenrein sein		

Durchführung der Titration

Reagenzien

KOH in Alkohol

KOH in Alkohol ist als fertige Maßlösung erhältlich.

Kalilauge nimmt schnell CO₂ aus der Luft auf und wird dadurch unbrauchbar. Die Lösung muss deshalb mit einem CO₂-Absorptionsmittel wie Natronkalk vor CO₂ geschützt werden. Hierzu wird auf die Vorratsflasche ein mit Natronkalk gefülltes Trockenröhrchen gesteckt.

Kaliumhydrogenphthalat

Das Kaliumhydrogenphthalat Referenzmaterial wird getrocknet, wie in dem entsprechenden Analysezertifikat beschrieben.

Reinigung und Handhabung der Elektroden

Die Elektrode wird mit destilliertem Wasser gereinigt.

Zur Aufbewahrung wird die Elektrolytlösung verwendet, mit der auch die Elektrode gefüllt ist.

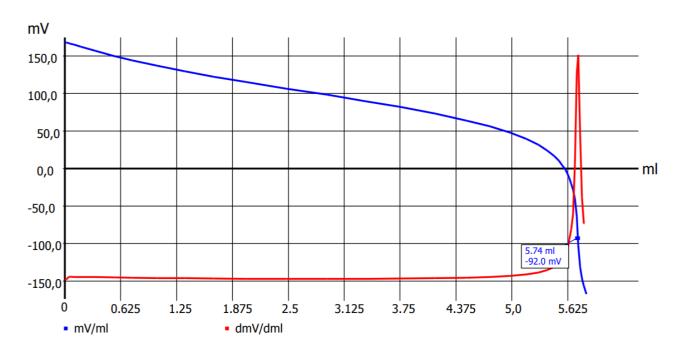
Probenvorbereitung

Die Menge des volumetrischen Standards hängt von der Größe der Bürette und der Konzentration des Titriermittels ab. Die Menge sollte so gewählt werden, dass etwa die Hälfte des Bürettenvolumens verbraucht wird. Am gebräuchlichsten ist die 20-mL-Bürette. Die benötigte Menge an KHPht kann nach dieser Faustregel abgeschätzt werden:

$$W[g] = 2 * Konzentration[mol/l]$$

Bei kleineren Konzentrationen (z.B. 0,01 mol/l) ist die benötigte Menge Referenzmaterial sehr gering und schwierig zu wiegen. Hier bedient man sich folgender Methode: eine größere Menge KHPht (W_{KHPht}) wird in einen Kolben eingewogen. Dazu wird die 100 – 200 fache Menge destilliertes Wasser (W_{H2O}) gewogen und das KHPht darin gelöst. Von dieser Lösung wird zur Titration eine aliquote Menge A eingewogen. Die darin enthaltene KHPht-Menge wird nach folgender Formel berechnet:

$$W[g] = \frac{W_{KHPht}[g]}{(W_{KHPht}[g] + W_{H2O}[g])} * A[g]$$


Zur Bestimmung des Titers einer 0,1 mol/l KOH werden ca. 0,2g Referenzmaterial in ein 150 ml Becherglas auf 0,1mg genau eingewogen und mit destilliertem Wasser auf 60-80 ml aufgefüllt und mit KOH bis zu einem Equivalenzpunkt titriert.

Weicht der angegebene Gehalt des KHPht-Referenzmaterials von 100 % ab, muss die Probenmenge zur Berechnung der Konzentration muss korrigiert werden:

$$W = \frac{Weight * spez. Gehalt \%}{100}$$

xylem | Titration 165 TD 2

Titrationsparameter

Standardmethode	Titer KOH		
Methodentyp	Automatische Titration		
Modus	Dynamisch		
Messwert	mV		
Messgeschwindigkeit / Drift	individuell	Min. Wartezeit	3 s
		Max. Wartezeit	15 s
		Messzeit	2 s
		Drift	10 mV/min
Startwartezeit	0 s		
Dynamik	steil	Max. Schrittweite	1.0 ml
		Steigung bei max. ml	15
		Min. Schrittweite	0.02 ml
		Steigung bei min. ml	230
Dämpfung	schwach	Titrationsrichtung	fallend
Vortitration	aus	Wartezeit	0 s
Endwert	aus		
EQ	Ein(1)	Steigungswert	700
Max. Titrationsvolumen	20 ml		
Dosiergeschwindigkeit	100%	Füllgeschwindigkeit	30 s

xylem | Titration 165 TD 3

Berechnung:

$$T\left[mol/l\right] = \frac{W*F2}{(EQ-B)*M*F1}$$

В	0	Blindwert
W	man	Probenmenge [g]
F2	1000	Umrechnungsfaktor 2
EQ1		Verbrauch des Titrationsmittels am EQ
М	204,22	Molekulargewicht von KHPht
F1	1	Umrechnungsfaktor 1

Das Ergebnis der Titerbestimmung sollte in mol/L direkt im Wechselaufsatz gespeichert werden.

Xylem Analytics Germany Sales GmbH & Co. KG, SI Analytics Erich-Dombrowski-Straße 4 • D-55127 Mainz Tel+ 49 6131 894-5111 TechInfo.xags@xylem.com xylemanalytics.com

